Markscheme

May 2022

Mathematics: applications and interpretation

Standard level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2022
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2022
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A} 1$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}$, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate \boldsymbol{A} marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) attempt to substitute into length of arc formula

$$
\begin{aligned}
& \frac{140^{\circ}}{360^{\circ}} \times 2 \pi \times 56 \\
& 137 \mathrm{~cm} \quad\left(136.833 \ldots, \frac{392 \pi}{9} \mathrm{~cm}\right)
\end{aligned}
$$

(b) subtracting two substituted area of sectors formulae

$$
\begin{equation*}
\left(\frac{140^{\circ}}{360^{\circ}} \times \pi \times 56^{2}\right)-\left(\frac{140^{\circ}}{360^{\circ}} \times \pi \times 10^{2}\right) \quad \text { OR } \frac{140^{\circ}}{360^{\circ}} \times \pi \times\left(56^{2}-10^{2}\right) \tag{A1}
\end{equation*}
$$

$$
3710 \mathrm{~cm}^{2} \quad\left(3709.17 \ldots \mathrm{~cm}^{2}\right)
$$

A1
[3 marks]
Total [5 marks]
2. (a) $\left(\frac{17+25}{130}=\right) \frac{42}{130}\left(\frac{21}{65}, 0.323076 \ldots\right)$
(b) $\left(\frac{17}{17+25}=\right) \frac{17}{42}(0.404761 \ldots)$

A1A1

Note: Award $\boldsymbol{A 1}$ for correct numerator and $\boldsymbol{A 1}$ for correct denominator. Award A1AO for working of $\frac{17 / 130}{\text { their answer to (a) }}$ if followed by an incorrect answer.
[2 marks]
(c) $\frac{41}{130} \times \frac{40}{129}$

A1M1

Note: Award A1 for two correct fractions seen, M1 for multiplying their fractions.

$$
=\frac{1640}{16770} \approx 0.0978\left(0.0977936 \ldots, \frac{164}{1677}\right)
$$

3. (a) $\sin \theta=\frac{2.1}{2.8} \quad$ OR $\quad \tan \theta=\frac{2.1}{1.85202 \ldots}$
$(\theta=) 48.6^{\circ}\left(48.5903 \ldots{ }^{\circ}\right) \quad$ A1
[2 marks]
(b) METHOD 1

$$
\begin{equation*}
\sqrt{2.8^{2}-2.1^{2}} \quad \text { OR } 2.8 \cos (48.5903 \ldots) \quad \text { OR } \frac{2.1}{\tan (48.5903 \ldots)} \tag{M1}
\end{equation*}
$$

Note: Award M1 for attempt to use Pythagorean Theorem with 2.1 seen or for attempt to use cosine or tangent ratio.
1.85 (m) (1.85202...)

Note: Award the M1A1 if 1.85 is seen in part (a).
(6.4-1.85202...)
4.55 m (4.54797...)

Note: Award $\boldsymbol{A 1}$ for 4.55 or equivalent seen, either as a separate calculation or in Pythagorean Theorem.

$$
\sqrt{(4.54797 \ldots)^{2}+2.1^{2}}
$$

5.01 m (5.00939...m)

METHOD 2

attempt to use cosine rule
$\left(c^{2}=\right) 2.8^{2}+6.4^{2}-2(2.8)(6.4) \cos (48.5903 \ldots)$
(A1)(A1)
Note: Award A1 for $48.5903 \ldots{ }^{\circ}$ substituted into cosine rule formula, $\boldsymbol{A} 1$ for correct substitution.

$$
(c=) 5.01 \mathrm{~m}(5.00939 \ldots \mathrm{~m})
$$

A1
[4 marks]
(c) camera 1 is closer to the cash register (than camera 2 and both cameras are at the same height on the wall)

R1
the larger angle of depression is from camera 1
A1
Note: Do not award R0A1. Award R0A0 if additional calculations are completed and used in their justification, as per the question. Accept " $1.85<4.55$ " or " $2.8<5.01$ " as evidence for the $\boldsymbol{R 1}$.
4. (a) $(\mathrm{pH}=)-\log _{10}\left(1.3 \times 10^{-5}\right)$
4.89 (4.88605...)

A1
(b) EITHER
calculating pH
$(\mathrm{pH}=)-\log _{10}\left(10 \times 1.3 \times 10^{-5}\right)$
3.89 (3.88605...)
($3.89<4.89$, therefore) the unknown liquid is more acidic (than coffee).
Note: Follow through within the part for the final A1. A correct conclusion must be supported by a mathematical justification linking the C-value to the pH level to earn the final A1; a comparison of C-values only earns MOAOAO.

OR
referencing the graph
The graph of $y=-\log _{10}(x)$ shows that as the value of x increases, the value of y decreases.

Since the C-value (x-value) of the unknown liquid is larger than that of the coffee, the pH level (y-value) is lower.

R1
The unknown liquid is more acidic (than coffee).
A1
Note: Follow through within the part for the final A1. A correct conclusion must be supported by a mathematical justification linking the C-value to the pH level to earn the final A1; a comparison of C-values only earns MOROAO.
[3 marks]
Total [5 marks]
5. (a) $(\mathrm{E}(X)=) 10 \times 0.8$

8 (people)
(b) recognition of binomial probability
0.0881 (0.0880803...)

A1
[2 marks]
(c) 0.8 and 6 seen OR 0.2 and 3 seen
attempt to use binomial probability
(A1)
0.121 ($0.120873 \ldots$...)
6. (a) EITHER
attempt to substitute 3, 4 and 7 into area of a trapezoid formula
$(A=) \frac{1}{2}(7+4)(3)$

OR

given line expressed as an integral
($A=) \int_{-1}^{2}(6-x) \mathrm{d} x$

OR

attempt to sum area of rectangle and area of triangle
$(A=) 4 \times 3+\frac{1}{2}(3)(3)$

THEN

16.5 (square units)
(b) (i) $\quad(A=) \int_{-1}^{2} 1.5 x^{2}-2.5 x+3 \mathrm{~d} x$

A1A1

Note: Award A1 for the limits $x=-1, x=2$ in correct location. Award A1 for an integral of the quadratic function, $\mathrm{d} x$ must be included. Do not accept " y " in place of the function, given that two equations are in the question.
(ii) 9.75 (square units)
(c) 16.5-9.75
6.75 (square units)
7. (a) $(88-62) \times 1.5$ OR 26×1.5 seen anywhere OR 39 seen anywhere (M1) 62-39
23 A1
$25>23 \quad$ R1
so is not an outlier AG
(b) The median score for the evening class is higher than the median score
for the morning class.

A1

THEN

but the scores are more spread out in the evening class than in the morning class
OR
the scores are more inconsistent in the evening class A1
OR
the lowest scores are in the evening class A1
OR
the interquartile range is lower in the morning class A1
OR
the lower quartile is lower in the evening class A1

Note: If an incorrect comparison is also made, award at most A1AO.
Award $\mathbf{A 0}$ for a comparison that references "the mean score" unless working is shown for the estimated means of the data sets, calculated from the mid-points of the 4 intervals. The estimated mean for the morning class is 71.375 and the estimated mean for the evening class is 70.5.
8. (a) $\quad\left(\mathrm{H}_{1}:\right) \mu_{1}-\mu_{2} \neq 0 \quad\left(\mu_{1} \neq \mu_{2}\right)$

Note: Accept an equivalent statement in words, however reference to "population mean" must be explicit for $\boldsymbol{A} \mathbf{1}$ to be awarded.
(b) 0.0778 ($0.0778465 \ldots$...)

A2
Note: Award A1 for an answer of $0.0815486 \ldots$ from not using a pooled estimate of the variance.
[2 marks]
(c) (i) $0.0778<0.1 \quad \boldsymbol{R 1}$
reject the null hypothesis A1
Note: Do not award ROA1.
(ii) there is (significant evidence of) a difference between the (population) mean reaction times

A1
Note: Their conclusion in (c)(ii) must match their conclusion in (c)(i) to earn A1. Award $\boldsymbol{A O}$ if their conclusion refers to mean reaction times in the sample.
9. (a) Accept any one of the following (or equivalent): one minimum and one maximum point three x-intercepts or three roots (or zeroes) one point of inflexion

Note: Do not accept "S shape" as a justification.
(b) (i) $\quad(d=)-5$

A1
(ii) $8=a+b+c$
$4=8 a+4 b+2 c$
$0=27 a+9 b+3 c$
Note: Award $\mathbf{A 2}$ if all three equations are correct.
Award $\boldsymbol{A 1}$ if at least one is correct. Award $\boldsymbol{A} 1$ for three correct equations that include the letter " d ".
(iii) $\quad a=2, b=-12, c=18$
(c) equating found expression to zero
$0=2 t^{3}-12 t^{2}+18 t-5$
$t=0.358216 \ldots, 1.83174 \ldots, 3.81003 \ldots$
(so total time in debt is $3.81003 \ldots-1.83174 \ldots+0.358216 \approx$)
2.34 (2.33650...) years
10. (a) sketch of normal curve with shaded region to the right of the mean and correct values

0.0921 ($0.0920950 \ldots$...)

A1
[2 marks]
(b) EITHER
($\mathrm{P}(x<172))$
0.906200...
(A1)
(0.906200...-0.68)
0.226200...

OR

$(\mathrm{P}(163<x<172))$
0.406200...
$0.5-(0.68-0.406200 \ldots)$ OR $0.5+(0.68-0.406200 \ldots)$
0.226200... OR 0.773799..

OR

(A1)(A1)

Note: Award A1 for a normal distribution curve with a vertical line on each side of the mean and a correct probability of either 0.406 or 0.274 or 0.906 shown, A1 for a probability of 0.226 seen.

THEN

($k=$) $158 \mathrm{~g}(157.867 \ldots \mathrm{~g}) \quad$ A1
11. (a) $\left(f^{\prime}(x)=\right) 2 x+\frac{3}{x^{2}}$

Note: Award $\boldsymbol{A} 1$ for $2 x, \boldsymbol{A} 1$ for $+\frac{3}{x^{2}}$ OR $+3 x^{-2}$.
(b) attempt to substitute 1 into their part (a)

$$
\left(f^{\prime}(1)=\right) 2(1)+\frac{3}{1^{2}}
$$

5
(c) EITHER
$5=2 x+\frac{3}{x^{2}}$ M1
$x=-0.686,1,2.19 \quad(-0.686140 \ldots, 1,2.18614 \ldots)$
OR
sketch of $y=f^{\prime}(x)$ with line $y=5$

three points of intersection marked on this graph
(and it can be assumed no further intersections occur outside of this window)

THEN

there are two other tangent lines to $f(x)$ that are parallel to L
Note: The final $\boldsymbol{A 1}$ can be awarded provided two solutions other than $x=1$ are shown OR three points of intersection are marked on the graph.

Award M1A1A1 for an answer of " 3 lines" where L is considered to be parallel with itself (given guide definition of parallel lines), but only if working is shown.
12. (a) $(x=)-\frac{4.48}{2(-1.6)} \quad \mathrm{OR}$ coordinates of maximum point $(1.4,3.136)$

$$
x=1.4
$$

(b) METHOD 1
the cart is centred in the archway when it is between $x=0.6$ and $x=2.2$,
where $y \geq 2.112(\mathrm{~m})$ (which is greater than 2) $\boldsymbol{R 1}$
the archway is tall enough for the crate A1

Note: Do not award ROA1.
METHOD 2
the height of the archway is greater or equal to 2.0 between $x=0.557385 \ldots$ and $x=2.24261 \ldots$
width of this section of archway $=$
$(2.24261 \ldots-0.557385 \ldots=) 1.68522 \ldots(\mathrm{~m})$ (which is greater than 1.6)
the archway is wide enough for the crate
Note: Do not award ROA1.
13. (a) METHOD 1 - (with $F V=4000$)

EITHER

$\mathrm{N}=10$
$\mathrm{I}=1.5$
$\mathrm{FV}=4000$
$\mathrm{P} / \mathrm{Y}=1$
$\mathrm{C} / \mathrm{Y}=1$
(A1)(M1)
Note: Award $\boldsymbol{A} 1$ for (3.5-2 =) 1.5 seen and $\boldsymbol{M 1}$ for all other entries correct.

OR
$4000=A(1+0.015)^{10}$
(A1)(M1)
Note: Award A1 for 1.5 or 0.015 seen, $\boldsymbol{M 1}$ for attempt to substitute into compound interest formula and equating to 4000 .

THEN

($\mathrm{PV}=$) $\$ 3447$ A1
Note: Award $\boldsymbol{A} 0$ if not rounded to a whole number or a negative sign given.

Question 13 continued
METHOD 2 - (With FV including inflation)
calculate FV with inflation
4000×1.02^{10}
(A1)
($=4875.977 \ldots$...)

EITHER

$4000 \times 1.02^{10}=\mathrm{PV} \times 1.035^{10}$
OR
$\mathrm{N}=10$
I $=3.5$
$\mathrm{FV}=4875.977 \ldots$
$\mathrm{P} / \mathrm{Y}=1$
$C / Y=1$
Note: Award M1 for their FV and all other entries correct.

THEN

($\mathrm{PV}=$) $\$ 3457$ A1
Note: Award $\mathbf{A O}$ if not rounded to a whole number or a negative sign given.

METHOD 3 - (Using formula to calculate real rate of return)
(real rate of return =) 1.47058...(\%)

EITHER

$4000=\mathrm{PV} \times 1.0147058 \ldots{ }^{10}$
OR
$\mathrm{N}=10$
$\mathrm{I}=1.47058 \ldots$
$\mathrm{FV}=4000$
$\mathrm{P} / \mathrm{Y}=1$
$\mathrm{C} / \mathrm{Y}=1$
Note: Award M1 for all entries correct.

THEN

($\mathrm{PV}=$) \$3457 A1

Question 13 continued
(b) METHOD 1 - (Finding the future value of the investment using PV from part (a))
$\mathrm{N}=10$
I=3.5
PV=3446.66...(from Method 1) OR 3456.67...(from Methods 2, 3)
$\mathrm{P} / \mathrm{Y}=1$
$\mathrm{C} / \mathrm{Y}=1$
(M1)
Note: Award M1 for interest rate 3.5 and answer to part (a) as PV.

```
( \(\mathrm{FV}=\) ) \(\$ 4861.87\) OR \$4875.97
(A1)
```

so payment required (from TVM) will be \$294 OR \$295 A1
Note: Award $\mathbf{A O}$ if a negative sign given, unless already penalized in part (a).

METHOD 2 - (Using FV)
$\mathrm{N}=10$
I=3.5
$\mathrm{PV}=-1000$
$\mathrm{FV}=4875.977 \ldots$
$\mathrm{P} / \mathrm{Y}=1$
$\mathrm{C} / \mathrm{Y}=1$
(A1)(M1)
Note: Award $\boldsymbol{A 1}$ for $\mathrm{I}=3.5$ and $\mathrm{FV}= \pm 4875.977 \ldots$, M1 for all other entries correct and opposite PV and FV signs.
($\mathrm{PMT}=$) $\$ 295$ (295.393) A1
Note: Correct 3sf answer is 295, however accept an answer of 296 given that the context supports rounding up. Award $\boldsymbol{A O}$ if a negative sign given, unless already penalized in part (a).

